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Abstract

The development and validation of the vertical diffusion module of IL-GLOBO, a La-
grangian transport model coupled online with the Eulerian General Circulation Model
GLOBO, is described. The module simulates the effects of turbulence on particle mo-
tion by means of a Lagrangian Stochastic Model (LSM) consistent with the turbulent5

diffusion equation used in GLOBO. The implemented LSM integrates particle trajec-
tories, using the native σ-hybrid coordinates of the Eulerian component, and fulfills
the Well Mixed Condition (WMC) in the general case of a variable density profile. The
module is validated through a series of 1-D numerical experiments by assessing its
accuracy in maintaining an initially well mixed distribution. A dynamical time-step se-10

lection algorithm with constraints related to the shape of the diffusion coefficient profile
is developed and gives accurate results, even for strongly peaked diffusivity profiles.
Finally, the skills of a linear interpolation and a modified Akima spline interpolation
method are compared, showing that the former generally introduces deviations from
the WMC, due to the inconsistency between the local value of the diffusion coefficient15

and its derivatives. The Akima interpolation algorithm, for which the model satisfies
the WMC rigorously, has a computational cost within 120 % of the linear interpolation
algorithm, making it a reasonable option for implementation in the 3-D model.

1 Introduction

Global (or hemispheric) scale transport is recognized as an important issue in air pol-20

lution and climate change studies. Pollutants can travel across continents and have an
influence even far from their source (see, e.g., Fiore et al., 2011; Yu et al., 2013, among
the most recent). Moreover, transport of volcanic emissions (e.g., the recent Eyjafjal-
lajökull eruption) or accidental hazardous releases (like the Fukushima and Chernobyl
nuclear accidents) are also important at the global scale.25
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The natural framework for the description of tracer transport in flows is the La-
grangian approach (see, for example, the seminal works by Taylor, 1921, and
Richardson, 1926). In the Lagrangian framework, the tracer transport is described by
integrating the kinematic equation of motion for fluid “particles” in a given flow velocity
field, provided by, e.g., a meteorological model. The turbulent motion unresolved by5

Eulerian equations for averaged quantities (in the Reynolds or volume-filtered sense)
can be accounted for by including a stochastic component into the kinematic equation.

The stochastic component can be added to the particle position, to give the La-
grangian equivalent of the Eulerian advection–diffusion equation. This kind of model is
usually called a Random Displacement Model (RDM) and is suitable for dispersion over10

long time scales. When the stochastic component is added to the velocity, the model
is usually called a Random Flight Model (RFM), which is more suitable for shorter time
dispersion. In both cases, the stochastic model formulation has to be consistent with
some basic physical requirements (Thomson, 1987, 1995).

Various Lagrangian transport models exist, which can be used at the global scale.15

Some are designed specifically for the description of atmospheric chemistry (see, e.g.,
Reithmeier and Sausen, 2002; Wohltmann and Rex, 2009; Pugh et al., 2012), while
others focus on the transport of tracers. In the latter class, two of the most widely used
models are FLEXPART (Stohl et al., 2005) and HYSPLIT (Draxler and Hess, 1998),
which are highly flexible and can be easily used in a variety of situations. Both are20

compatible with different input types (usually provided by meteorological services like
ECMWF), relying on their own parameterization for fields not available from the mete-
orological model output. Models of this kind are suited for both forward and backward
dispersion studies.

An alternative approach is to couple the Eulerian and Lagrangian parts online. On25

one hand, this makes the Eulerian fields available to the Lagrangian model at each
Eulerian time-step, increasing the accuracy for temporal scales shorter than the typical
meteorological output interval. On the other hand, it also allows the consistent param-
eterization of processes in the Eulerian and Lagrangian frameworks (e.g., the vertical
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dispersion in the boundary layer). Moreover, where the considered tracer may have an
impact on meteorology (e.g., on radiation or cloud micro-physics), online integration
provides a natural way to include these effects (Baklanov et al., 2014). Online coupling
also ensures the consistency of a mixed Eulerian–Lagrangian analysis of the evolution
of atmospheric constituents (e.g., water 0 or pollutants) along a trajectory (see, e.g.,5

Sodemann et al., 2008; Real et al., 2010).
Malguzzi et al. (2011) recently developed a new global numerical weather predic-

tion model, named GLOBO, based on a uniform latitude-longitude grid. The model is
an extension to the global scale of the Bologna Limited Area Model (BOLAM) (Buzzi
et al., 2004), developed and employed starting from the early 90s. GLOBO is used for10

daily forecasting at the Institute of Atmospheric Sciences and Climate of the National
Research Council of Italy (ISAC-CNR) and is also used to produce monthly forecasts.
Online integration with BOLAM family models has already yielded interesting results in
the development of the meteorology and composition model BOLCHEM (Mircea et al.,
2008). Considering that experience, the GLOBO model constitutes the natural basis15

for the further development of an Integrated Lagrangian model.
In the following, the development of the vertical diffusion module is presented, focus-

ing in particular on its compliance with basic theoretical requirements (the Well Mixed
Condition, see Thomson, 1987, 1995) in connection with different numerical issues. In
Sect. 2 the theoretical basis of the model formulation is given, while Sect. 3 describes20

different aspects of the numerical implementation. Finally, the model verification is pre-
sented and discussed in Sect. 4.

2 Lagrangian stochastic model formulation

In application to dispersion in turbulent flows, Lagrangian stochastic models (LSMs),
Markovian at order M (M = 0,1, . . .), are described by a set of stochastic differential25

equations (SDEs). The equation for the derivative of order M is:
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dX (M)
i = aidt+bi jdWj , (1)

where i and j indicate the components and X (k)
i is the kth order time-derivative of

the Lagrangian Cartesian coordinate component Xi ≡ X (0)
i . Coefficients ai and bi j are

called drift and Wiener coefficients, respectively. The remaining equations of the set
(1 ≤ k ≤M) are described by:5

dX (k−1)
i = X (k)

i dt. (2)

The set of equations is equivalent to the Fokker–Planck equation:

∂p
∂t

= −
M∑
k=0

∂

∂x(k)
i

(Ak
i p)+

∂2

∂x(M)
i ∂x(M)

j

(Ki jp), (3)

where Ak
i = 1 for k <M and Ak

i = ai for k =M, xi is the Eulerian equivalent of Xi and
Ki j ≡ bikbkj/2 (Thomson, 1987). Equation (3) describes the evolution of the probability10

density function p(X(0), . . . ,X(M),t), where X(k) = (X (k)
1 ,X (k)

2 ,X (k)
3 ). For the evolution of

(X(0), . . . ,X(M)) to be approximated by a Markov process, the time correlation of the
variable X(M+1) has to be much shorter than the characteristic evolution time of X(M).
If the model has to describe the evolution of dispersion at time t � τ, where τ is the
correlation time of turbulent velocity fluctuations, the process is well captured at order15

M = 0. When shorter times are considered, as in the case of dispersion from a single
point source before the Taylor (1921) diffusive regime occurs (t ≤ τ), order M must
be increased to 1. The model of lowest order (M = 0, or RDM) is sufficiently accurate
to describe transport and mixing of particles at time and space resolution typical of
a global model.20

The correct formulation of a RDM in a variable density flow was first obtained by
Venkatram (1993) and then generalized by Thomson (1995). It is briefly recalled here.
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Equation (3) is valid for the pdf p of particle position with the initial condition
p(x,t)|t=t0 = p(x,t0). Since the ensemble average of concentration 〈c〉 is proportional
to p, Eq. (3) can be rewritten as

∂〈c〉
∂t

= − ∂
∂xi

(ai 〈c〉)+
∂2

∂xi∂xj
(Ki j 〈c〉). (4)

If 〈c〉 ∝ 〈ρ〉 at some time t′, where 〈ρ〉 is the ensemble average of air density, then ∀t > t′5

the two quantities must remain proportional. This condition, called well mixed condition
(WMC) after Thomson (1987), implies that 〈ρ〉 is also a solution of Eq. (4). In order to
obtain an expression for the drift coefficient ai , the most natural choice is to use the
continuity equation. In meteorological models it is (Thomson, 1995) written as:

∂〈ρ〉
∂t

= − ∂
∂xi

(
ui 〈ρ〉

)
, (5)10

where ui is the density weighted velocity, defined as:

ui =
〈uiρ〉
〈ρ〉

= 〈ui 〉+
〈u′

iρ
′〉

〈ρ〉
. (6)

With this choice, the following expression for the drift term is obtained:

ai =
∂Ki j

∂xj
+
Ki j

〈ρ〉
∂〈ρ〉
∂xj

+ui . (7)

At the coarse resolution typical of global models, vertical motions can be considered15

decoupled from the horizontal ones. Therefore, only the vertical coordinate x3 ≡ z (and
X3 ≡ Z in Lagrangian terms) need to be considered. In this case, the RDM reduces to
a single differential stochastic equation

dZ =
(
w +

∂K
∂z

+
K
〈ρ〉

∂〈ρ〉
∂z

)
dt+

√
2KdW , (8)

where w ≡ u3 and K ≡ K33.20
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3 Numerical implementation of the vertical diffusion module

In its final form, IL-GLOBO will be a fully online integrated model (or, at least an online-
access model, according to Baklanov et al., 2014), where the different components
share the same “view” of the atmosphere, i.e., use the same discretization, param-
eterizations, etc. The development of the vertical diffusion module is based on this5

principle.

3.1 Vertical coordinate

Within IL-GLOBO, the Lagrangian equations are integrated in the same coordinate
system used in the Eulerian Model. This choice maintains the consistency between
the Lagrangian and Eulerian components and reduces the interpolation errors and10

computational cost.
GLOBO uses a hybrid vertical coordinate system in which the terrain-following co-

ordinate σ (0 < σ < 1) smoothly tends, with height above the ground, to a pressure
coordinate P , according to:

P = P0σ − (P0 − PS)σα, (9)15

where P0 is a reference pressure (typically 1000 hPa), PS is the surface pressure and
α is a parameter that gives the classical σ coordinate for α = 1 (Phillips, 1957). The
parameter α depends on the model orography and, therefore, on resolution. It is limited
by the relationship:

α ≤
P0

P0 −min(PS)
, (10)20

which is satisfied by the typical setting α = 2, used for a wide range of resolutions in
GLOBO applications (Malguzzi et al., 2011).

The vertical Lagrangian coordinate is identified by Σ and is connected to the La-
grangian vertical position Z through Eq. (9) and the hydrostatic relationship. In the
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meteorological component, z is a diagnostic quantity that can be derived from the
geopotential Φ through z(σ) = (Φ(σ)−Φg)g−1, where Φg is the geopotential of the
model surface. Since the determination of the different terms in Eq. (8) involves dis-
crete Eulerian fields and their numerical derivatives, the choice to employ σ has also
the advantage of making interpolation straightforward and consistent with the Eulerian5

part.
Because σ(z) is not linear (σ is not a Cartesian coordinate system), the stochastic

chain rule (see, e.g. Kloeden and Platen, 1992, p. 80) must be used to derive the
correct form of Eq. (8) for Σ, giving:

dΣ =

[
ω+

K
〈ρ〉

∂〈ρ〉
∂σ

+
∂K
∂σ

+K
∂2σ
∂z2

]
dt+

√
2KdW , (11)10

where ω is the vertical velocity in the σ coordinate system and z is the Cartesian
vertical coordinate. The last term in square brackets stems from the Taylor expansion
of order dW 2, which must be included for the correct description at order dt (Gardiner,
1990, p. 63).

3.2 Discretization and interpolation15

The GLOBO prognostic variables are computed on a Lorenz (1960) vertical grid: all the
quantities are on “integer” levels σi , except vertical velocity, turbulent kinetic energy and
mixing length and, consequently, diffusion coefficients, located at “semi-integer” levels
σh
i (see, Fig. 1). In typical applications, the GLOBO vertical grid is regularly spaced in

σ (Malguzzi et al., 2011), although it is possible to use a variable grid spacing, as in its20

limited area version BOLAM (Buzzi et al., 1994).
Being Σ a continuous coordinate, the quantities needed to compute the terms of

Eq. (11) must be interpolated from the Eulerian fields given at discrete levels. The
computation of first and second order derivatives of Eulerian model quantities is also
required in the implementation of the LSM. Interpolation and derivation algorithms can25
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influence both the accuracy and the computational cost of the Lagrangian model and
thus require careful assessment.

Two different methods are tested in the following sections. The first is a simple al-
gorithm, in which the variables and their first- and second-order derivatives, computed
on the grid points using a centered 3 point scheme of order O(∆σ2) consistently with5

the Eulerian component, are interpolated linearly at particle position Σ. The second
algorithm is based on the Akima (1970) and Akima (1991) splines. These algorithms
reduce the number of oscillations in the interpolating function compared to regular
cubic splines. The difference between the two versions is that the linearity of the in-
terpolating function is enforced when 3 (Akima, 1970) or 4 (Akima, 1991) points are10

collinear. In addition, to ensure the positivity of the interpolating functions, the local
algorithm of Fischer et al. (1991) is used, which also preserves the continuity of first
order derivatives.

When linear interpolation is adopted, the values of first and second order deriva-
tives at the boundaries are computed using two different methods, depending on the15

field being derived. As far as diffusivity is concerned, the first order derivative at the
boundary is obtained by:

∂K
∂σ

∣∣∣∣
NLEV+1

=
KNLEV+1 −KNLEV

σNLEV+1 −σNLEV
, (12)

which implies a zero second order derivative. This is assumed because K is expected
to be linear near the surface, according to Monin–Obukhov similarity theory where:20

K (z) = κu∗z, (13)

for the neutral case, with proper modifications for diabatic cases. Since, in contrast to
K , density is not linear, the requirement is:

∂2ρ

∂σ2

∣∣∣∣∣
NLEV+1

=
∂2ρ

∂σ2

∣∣∣∣∣
NLEV

, (14)
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which implies:

∂ρ
∂σ

∣∣∣∣
NLEV+1

=
∂ρ
∂σ

∣∣∣∣
NLEV

+
∂2ρ

∂σ2

∣∣∣∣∣
NLEV

(σNLEV+1 −σNLEV), (15)

for the first order derivative. Following the same considerations made for ρ, the deriva-
tives of σ with respect of z are computed from relationships similar to Eqs. (14) and
(15).5

Regarding the Akima-spline interpolation, which is implemented only for the K field,
a linear profile near the ground is imposed to the interpolating function.

3.3 Integration scheme and time-step selection

The most common integration scheme for SDE in atmospheric transport models is the
Euler–Maruyama forward scheme:10

Σt+∆t = Σt +a∆t+b∆W . (16)

The coefficients a and b come from Eq. (11). The Euler–Maruyama forward scheme is
the simplest strong Taylor approximation and turns out to be of order of strong conver-
gence γ = 0.5 (Kloeden and Platen, 1992, p. 305).

By a rather simple modification of the Euler–Maruyama scheme, i.e. adding the term:15

1
2
bb′(∆W 2 −∆t), (17)

where b′ is the first-order derivative of b, the Milstein scheme is obtained, which is
of order of strong convergence γ = 1. It is worth noting that the strong order γ = 1 of
the Milstein scheme corresponds to the strong order γ = 1 of the Euler determinis-20

tic scheme. Therefore, Milstein can be regarded as the correct generalization of the
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deterministic Euler scheme (Kloeden and Platen, 1992, p. 345). The additional term
uses only already computed quantities (involved in the determination of the drift term
of Eq. 11) and therefore its implementation is of negligible computational cost. The
Milstein scheme is thus implemented in IL-GLOBO.

In the meteorology component of IL-GLOBO, the Eulerian equations are solved with5

a macro time-step ∆T , which depends basically on the horizontal resolution due to the
limitations imposed by the Courant number. Other time-steps are involved in the Eule-
rian part but are not relevant here. In typical implementations, ∆T ranges from 432 s for
362×242 point resolution (used for monthly forecasts http://www.isac.cnr.it/dinamica/
projects/forecast_dpc/month_en.htm) to 150 s for 1202×818 point resolution (used10

for high resolution weather forecasts http://www.isac.cnr.it/dinamica/projects/forecasts/
glob_newNH/).

The macro time-step is taken as the upper limit for the solution of Eq. (11). The
time-step needed to reach the required accuracy depends on the quantities involved in
determining the various elements in Eq. (16).15

First, a straightforward constraint is that the time-step must satisfy the relationship√
2K∆t1 � K

(
∂K
∂σ

)−1

, (18)

(see, e.g., Wilson and Yee, 2007), which expresses the requirement that the average
root-mean square step length must be much smaller than the scale of the variations of
K . This gives rise to a limitation that is consistent with the surface layer behavior of the20

diffusion coefficient, Eq. (13). The condition expressed by Eq. (18) makes ∆t1 vanish for
z → 0. Such behavior ensures the WMC to is satisfied theoretically, but clearly poses
problems for numerical implementation (Ermak and Nasstrom, 2000; Wilson and Yee,
2007). However, in the application of a global model, where particles can be distributed
throughout the troposphere, this problem affects only a small fraction of particles in the25

vicinity of the surface. Therefore, it can be dealt with by selecting a ∆tmin small enough
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for the solution to be within the accepted error and, at the same time, large enough to
not impact on the overall computational cost.

In addition to Eq. (18), another constraint is needed to account also for the presence
of a maximum in the K profile, which must be present if one considers the whole atmo-
sphere. At maxima (or minima), Eq. (18) gives an unlimited ∆t1, which is not suitable5

for the integration of the model as it could cause the trajectory to cross the maximum
(or minimum), with a significant change in K (z) associated to a change in ∂zK sign. To
avoid this problem, a further constraint is introduced, based on the normalized second-
order derivative, which gives an estimation of the width of the maximum. The constraint
reads:10

2K∆t2 � K

∣∣∣∣∣∂2K
∂σ2

∣∣∣∣∣
−1

. (19)

The above Equation has the property of limiting ∆t2 according to the sharpness of the
K peak.

Taking the minimum among ∆T , ∆t1 and ∆t2 (and replacing “�” by “= CT ” in Eqs. 18
and 19), gives:15

∆t = min

∆T ,
CT

2
K
(
∂K
∂σ

)−2

,
CT

2

∣∣∣∣∣∂2K
∂σ2

∣∣∣∣∣
−1
 , (20)

where the parameter CT quantifies the “much less” condition and, therefore, must be
smaller than at least 0.1. No other arbitrary assumption is needed to define this crite-
rion. Its performance will be evaluated below.

Figure 2 shows the application of Eq. (20) for a K profile representative of GLOBO20

(see below) and a CT = 0.01. The ∆t decreases in the presence of K gradients thanks
to condition (18), and is limited around the K maximum (where ∂K/∂σ = 0) by condi-
tion (19). The maximum of ∆t = ∆T is attained at higher levels.
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3.4 Boundary conditions

The necessary boundary condition for the conservation of the probability (and there-
fore of the mass) is the reflective boundary (Gardiner, 1990, p. 121). Wilson and Flesch
(1993) show that the elastic reflection ensures the WMC if the integration time-step is
small enough. However, in cases of non-homogeneous K , numerical implementation5

requires that ∆t vanishes as the particle approaches the boundary. For models that
focus on near surface dispersion, the time-step needed to achieve the required accu-
racy can become very small. Ermak and Nasstrom (2000) describe a theoretically well
founded method to speed-up (roughly by a factor of 10) simulations of this kind.

In the case of IL-GLOBO, it will be shown that the elastic reflection condition at σ = 1,10

coupled with the adaptive time step algorithm described in Sect. 3.3, can ensure a good
approximation of the solution while maintaining affordable the computational cost.

4 Model verification: the well-mixed condition

In order to test the vertical diffusion module of IL-GLOBO, a series of experiments
was performed with a 1-D version of the code. Input profiles were obtained by running15

the low-resolution version of GLOBO (horizontal grid of 362×242 cells and 50 verti-
cal levels evenly spaced in σ) for the period 11 March 2011–18 March 2011. After 6 h
of simulation time, averages on σ = const were performed for K , ρ and z, obtaining
vertical profiles as a function of σ. They do not show substantial variation in time and
are considered representative of the mean atmosphere. Profiles of ρ and z are rather20

smooth and regular over space and time, while K displays a large variability. The pro-
files were fitted with analytical functions for subsequent use. The following analytical
expressions were used:

ρ(σ) = ρ0σ
(RdΓ/g+1), (21)
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and:

z(σ) =
(σ−RdΓ/g −1)T0

Γ
, (22)

with T0 = 288.0 K, ρ0 = 1.2 kgm−3 and Γ = −0.007 Km−1. As can be observed, express-
ing the density ρ in sigma vertical units (ρσ = ρ

∣∣ dz
dσ

∣∣) and using Eqs. (22) and (21), the
following constant value is obtained:5

ρσ =
ρ0RdT0

g
. (23)

Figure 3 shows the GLOBO averaged profiles and their fitting functions for the density
ρ and the Cartesian coordinate z as function of σ.

As far as the K profile is concerned, the function

K (z) = Azexp
[
−(Bz)C

]
, (24)10

is used to account for the specific K features: it should display a linear behavior near
the surface, must vanish near the boundary layer top1 and, therefore, must display
a maximum at some height. In Eq. (24), A = 0.23 was first determined according to
average surface-layer properties (the first GLOBO vertical level), and corresponds to
a friction velocity u∗ ' 0.5. Then, the other two parameters were let to vary to best fit15

the average profile giving B = 3.8×10−3 and C = 1.3.
In the following sections, an alternative K profile is used to test the model in a more

critical situation. In fact, the local K profiles resulting from a GLOBO simulation some-
times display isolated strong maxima at the second level above the model surface.
This second profile was obtained from Eq. (24) by arbitrarily selecting B = 2.0×10−3

20

and C = 5.0. Figure 4 reports the GLOBO averaged, “fitted” and “peaked” K profiles as
function of σ.

1In GLOBO, K also accounts for a part of the instability generated by moist convection and
therefore it may not vanish at the boundary layer top.
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4.1 Determination of the optimal setting for the adaptive time-step selection
algorithm

The first series of experiments concerns the optimization of the adaptive scheme for
∆t, i.e., the selection of the best suited value for the coefficient CT .

Simulations were performed in flow conditions described by Eqs. (22), (21) and (24),5

distributing particles with number concentration proportional to ρ. For the WMC to be
satisfied, this distribution must remain constant as the time evolves. A number of about
4×105 particles were used for all the tests described in this section. Equation (11)
was integrated for each particle for 200 macro time-steps, each 432 s long, for a total
of T = 86400s = 24h. Since the initial condition was already well-mixed (C ∝ ρ), the10

simulation time was considered sufficient to assess the skill of the model in satisfying
the WMC. At the end of the simulation, final profiles were computed of concentration
in “σ volume”, i.e., c(σ) = N(σ)(∆σ)−1, where N(σ) is the number of particles between
σ and σ +∆σ. The skill of the model in reproducing the WMC was evaluated using
the root mean square error (RMSE) of the final normalized concentration profile with15

respect to the normalized density profile (derived using Eq. 23).
Simulations were performed using 4 cores of an Intel Xeon machine.
Figure 5 reports the different profiles of concentration after 24 h of simulation com-

puted using different values of CT . The shaded region represents the interval between
3 standard deviations from the expected value. RMSE values for each simulation are20

reported in Table 1 along with the computation time. The RMSE error becomes com-
parable to the statistical error for CT = 0.01, which is selected as the optimal value.

It is also worth noting that the time-step selection algorithm with the proper choice of
CT ensures that the WMC is satisfied at the reflective boundary too, as mentioned in
Sect. 3.4.25
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4.2 Evaluation of the interpolation algorithms

In the subsequent set of experiments, the model skill in reproducing the WMC was
evaluated for various resolutions and different interpolation algorithms.

The analytical fields described by Eqs. (21), (22) and (24) were sampled on the grids
defined in Table 2. The σ values for grid points in the case of non-regular grid are5

defined by:

σ(1/2)
i = βζi +γζ3

i +δζ4
i , (25)

where σ(1/2)
i is the i th semi-integer level, ζi = i/(NLEV+1), β = 0.78, γ = 1.44 and

δ = 1.22. The resulting grid has higher resolution near σ = 1 and a lower resolution for
the levels in the center of the domain, where an accurate description of the fields is10

expected to be less necessary. Grids with 50 points (A, B) are representative of the
actual GLOBO resolution, while grids with 100 points are considered as a resolution
attainable for specific experiments. Finer grids are included only for testing purposes.

The two interpolation algorithms were tested for different diffusivity profiles and res-
olutions. The particle number, initial distribution and simulation time were the same as15

in the experiment described in Sect. 4.1.
The first experiment concerned the linear interpolation algorithm. Figure 6 shows the

results for numerical simulations performed with the “fitted” distribution at the various
resolutions. The integration time-step and the diffusion coefficient profiles are shown
in the upper panel. The lower panel displays the normalized distribution of the particle20

after 24 h of simulation along with the expected value.
The experiment with grid A deviates from the WMC both near the ground and in

the region above the maximum of diffusivity. The experiment with grid B performs no-
ticeably better at the ground, where the resolution is finer than in grid A. All the other
experiments give acceptable results, with the only exception of the grid C experiment,25

which still displays an accumulation of particles near the ground. It can be observed
that the resolution of grid C is coarser than that of grid B near the surface.
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Figure 7 shows the same quantities as Fig. 6 for the case of the “peaked” K profile.
None of the resolutions produced results that fulfill the WMC. The same also true for
the highest resolution (grid F), with a clearly visible depletion of particles in the area
of strong gradient above the K maximum. An additional reduction of the integration
time-step by a factor of 102 did not improve the result (not shown).5

The problem could be related to the inconsistency between interpolated functions
and their derivatives (first- and second-order) as a result of the linear interpolation
between the grid points. The numerical algorithm computes derivatives at the grid
points and then linearly interpolates functions and derivatives. With this choice, first-
and second-order derivatives are computed at the same order of approximation at the10

grid points. However, between grid points the consistency of the different components
of the stochastic model is not guaranteed. Although it is appropriate for slowly varying
and monotone functions like ρ and z, it is unsuitable for K , because it usually displays
a more complex profile and affects both the Wiener stochastic term and the drift term.

The use of an interpolation algorithm of higher order is appropriate in this case. The15

choice of the Akima cubic spline automatically ensures consistency between values
and derivatives and the continuity of the first order derivative. With the additional con-
straint for non-negative values (see Sect. 3.2), the WMC is formally and numerically
ensured, along with the physical consistency of the solution.

One drawback of higher-order polynomial interpolation algorithms is the computa-20

tional cost. To this end, the computational cost of the Akima algorithms was evaluated,
comparing its execution time to that of the linear interpolation algorithm.

Table 3 shows the results of this comparison expressed in terms of execution time (in
s) and accuracy (RMSE) for resolutions of 50 and 100 grid points, in experiments with
the “fitted” diffusivity distribution. The accuracy of experiments with Akima interpolation25

is comparable with the results obtained using analytical functions (as expected), and
their computational cost is only within a factor of 1.2 compared to that of the linear
algorithm.
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5 Conclusions

The development of a vertical Lagrangian diffusion model is presented. This consti-
tutes the first step in building IL-GLOBO, a Lagrangian particle model integrated in the
Eulerian global circulation model GLOBO. Critical details of the implementation have
been analyzed and discussed.5

The model is developed including the variable density term and the proper coordi-
nate transformation term. The numerical scheme selected to integrate the SDE is the
Milstein scheme, which is of order of strong convergence γ = 1. Therefore, it should
be regarded as the natural extension of the deterministic Euler scheme, in contrast
to the so-called Euler–Maruyama scheme, which is merely the “transcription” of the10

deterministic Euler scheme, but not its equivalent.
An adaptive time-step scheme is proposed to ensure the consistency of the model

implementation with the WMC requirements. The time-step selection algorithm is lim-
ited not only by the condition imposed by the spatial scale of gradients, but also takes
into account the scale of the width of maxima and minima of the diffusion coefficient,15

where the former criterium fails. It is shown that this algorithm ensures that the error is
within an acceptable range also at the reflecting boundaries.

Numerical implementations have to deal with the intrinsic discretization imposed by
the grid of the Eulerian meteorological model. Two numerical interpolation and deriva-
tion schemes are implemented and tested. One is based on linear interpolation and20

computation of discrete derivatives of order two. The second is based on a modified
Akima (1991) interpolation algorithm.

It is found that in the case of the linear scheme strong gradients and isolated maxima
in the diffusivity distribution make the results very sensitive to the spatial resolution
and the grid distribution. The model error in representing the WM state is also more25

sensitive to the interpolation and derivation error than to the time discretization error,
as long as we consider a number of grid cells typical of a GLOBO simulation and
a reasonable setting for the adaptive time-step scheme.
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A vertical stretched grid should be used to solve the Eulerian fields in order to reduce
the discretization problem near the ground, but the consequent increase in resolution
will not ensure the WMC compliance when strong gradients are present.

The second interpolation method (Akima, 1970, 1991; Fischer et al., 1991), while
not guaranteeing the continuity of the second order derivative, gives good results at an5

acceptable computational cost for 1-D applications of the model, suggesting that the
consistency between the value of diffusivity and its derivative is one of the determining
factors for attaining the WMC. The applicability of this scheme in the full 3-D model still
needs to be tested.

The vertical diffusion model is now ready to be implemented within the 3-D global10

circulation model GLOBO, adding horizontal diffusion and parallelization, and finally
verifying the consistency and numerical efficiency of the approach.

Code availability

The numerical code is released under the GNU Public Licence and is available at
http://bolchem.isac.cnr.it/source_code.do.15

The software is packed as a library using autoconf , automake and libtools
which allows for configuration and installation in a variety of systems. The code is de-
veloped in a modular way, permitting the easy improvement of physical and numerical
schemes.

Acknowledgements. The software used for the production of this article (model development,20

model run, data analysis, graphics, typesetting) is Free Software. The authors would like to
thank the whole free software community, the Free Software Fundation (http://www.fsfs.org) and
the Debian Project (http://www.debian.org). Daniele Rossi was partially supported by the CNR
and CMCC agreement: “Impatto degli ‘hot spot’ sui cambiamenti climatici a scala regionale”.
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Table 1. RMSE and execution time for different CT .

CT RMSE Time [s]

0.5 0.044 76
0.1 0.037 238

0.01 0.021 1172
0.001 0.021 7317
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Table 2. Resolution and grid spacing type for experiments performed in this work.

Grid label Resolution (#points) Grid spacing

A 50 regular
B 50 non-regular
C 100 regular
D 100 non-regular
E 200 regular
F 500 regular
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Table 3. Execution time and RMSE for experiments made with the flat diffusivity distribution,
varying resolution and interpolation method.

Interpolation algorithm n. points exec. time RMSE

Akima-70 50 332 s 0.024
Akima-91 50 327 s 0.023
Linear 50 293 s 0.097

Akima-70 100 582 s 0.022
Akima-91 100 578 s 0.022
Linear 100 497 s 0.059

2821

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/2797/2014/gmdd-7-2797-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/2797/2014/gmdd-7-2797-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 2797–2828, 2014

IL-GLOBO: vertical
diffusion module

D. Rossi and A. Maurizi

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Rossi and Maurizi: IL-GLOBO: vertical diffusion module 3

At the coarse resolution typical of global models, verti-

cal motions can be considered decoupled from the horizontal165

ones. Therefore, only the vertical coordinate x3 ≡ z (and

X3 ≡ Z in Lagrangian terms) need to be considered. In

this case, the RDM reduces to a single differential stochastic

equation

dZ =

(

w+
∂K

∂z
+

K

〈ρ〉
∂〈ρ〉
∂z

)

dt+
√
2KdW , (8)170

where w≡u3 and K ≡K33.

3 Numerical implementation of the vertical diffusion

module

In its final form, IL-GLOBO will be a fully online integrated

model (or, at least an online-access model, according to Bak-175

lanov et al., 2014), where the different components share the

same “view” of the atmosphere, i.e., use the same discretiza-

tion, parameterizations, etc. . The development of the verti-

cal diffusion module is based on this principle.

3.1 Vertical coordinate180

Within IL-GLOBO, the Lagrangian equations are integrated

in the same coordinate system used in the Eulerian Model.

This choice maintains the consistency between the La-

grangian and Eulerian components and reduces the interpo-

lation errors and computational cost.185

GLOBO uses a hybrid vertical coordinate system in which

the terrain-following coordinate σ (0 < σ < 1) smoothly

tends, with height above the ground, to a pressure coordinate

P , according to:

P =P0σ−(P0−PS)σ
α , (9)190

where P0 is a reference pressure (typically 1000 hPa), PS is

the surface pressure and α is a parameter that gives the clas-

sical σ coordinate for α=1 (Phillips, 1957). The parameter

α depends on the model orography and, therefore, on resolu-

tion. It is limited by the relationship:195

α≤ P0

P0−min(PS)
, (10)

which is satisfied by the typical setting α=2, used for a wide

range of resolutions in GLOBO applications (Malguzzi et al.,

2011).

The vertical Lagrangian coordinate is identified by Σ and200

is connected to the Lagrangian vertical position Z through

Equation (9) and the hydrostatic relationship. In the me-

teorological component, z is a diagnostic quantity that can

be derived from the geopotential Φ through z(σ) = (Φ(σ)−
Φg)g

−1, where Φg is the geopotential of the model surface.205

Since the determination of the different terms in Equation (8)

Fig. 1. Schematic representation of field value distributions be-

tween integer (continuous lines) and semi integer (dashed lines) lev-

els in the GLOBO model.

involves discrete Eulerian fields and their numerical deriva-

tives, the choice to employ σ has also the advantage of mak-

ing interpolation straightforward and consistent with the Eu-

lerian part.210

Because σ(z) is not linear (σ is not a Cartesian coordi-

nate system), the stochastic chain rule (see, e.g. Kloeden and

Platen, 1992, p. 80) must be used to derive the correct form

of Equation (8) for Σ, giving:

dΣ=

[

ω+
K

〈ρ〉
∂〈ρ〉
∂σ

+
∂K

∂σ
+K

∂2σ

∂z2

]

dt+
√
2KdW , (11)215

where ω is the vertical velocity in the σ coordinate system

and z is the Cartesian vertical coordinate. The last term in

square brackets stems from the Taylor expansion of order

dW 2, which must be included for the correct description at

order dt (Gardiner, 1990, p. 63).220

3.2 Discretization and interpolation

The GLOBO prognostic variables are computed on a Lorenz

(1960) vertical grid: all the quantities are on “integer” lev-

els σi, except vertical velocity, turbulent kinetic energy and

mixing length and, consequently, diffusion coefficients, lo-225

cated at “semi-integer” levels σh
i (see, Figure 1). In typical

applications, the GLOBO vertical grid is regularly spaced in

σ (Malguzzi et al., 2011), although it is possible to use a

variable grid spacing, as in its limited area version BOLAM

(Buzzi et al., 1994).230

Being Σ a continuous coordinate, the quantities needed

to compute the terms of Equation (11) must be interpolated

from the Eulerian fields given at discrete levels. The compu-

tation of first and second order derivatives of Eulerian model

quantities is also required in the implementation of the LSM.235

Interpolation and derivation algorithms can influence both

Fig. 1. Schematic representation of field value distributions between integer (continuous lines)
and semi integer (dashed lines) levels in the GLOBO model.
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Fig. 2. Values of integration time-step ∆t for the diffusivity profile

shown by the red curve. The green line shows the contribution of

Eq. (18), the blue line the contribution of Eq. (19), and the black line

the combined condition (Eq. 20, with ∆T =432 s and CT =0.01).

a ∆tmin small enough for the solution to be within the ac-

cepted error and, at the same time, large enough to not impact

on the overall computational cost.

In addition to Equation (18), another constraint is needed

to account also for the presence of a maximum in the K pro-335

file, which must be present if one considers the whole at-

mosphere. At maxima (or minima), Equation (18) gives an

unlimited ∆t1, which is not suitable for the integration of the

model as it could cause the trajectory to cross the maximum

(or minimum), with a significant change in K(z) associated340

to a change in ∂zK sign. To avoid this problem, a further

constraint is introduced, based on the normalized second-

order derivative, which gives an estimation of the width of

the maximum. The constraint reads:

2K∆t2 ≪K

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1

. (19)345

The above Equation has the property of limiting ∆t2 accord-

ing to the sharpness of the K peak.

Taking the minimum among ∆T , ∆t1 and ∆t2 (and re-

placing “≪” by “=CT ” in Equations (18) and (19)), gives:

∆t=min

[

∆T,
CT

2
K

(

∂K

∂σ

)

−2

,
CT

2

∣

∣

∣

∣

∂2K

∂σ2

∣

∣

∣

∣

−1
]

, (20)350

where the parameter CT quantifies the “much less” condition

and, therefore, must be smaller than at least 0.1. No other

arbitrary assumption is needed to define this criterion. Its

performance will be evaluated below.

Figure 2 shows the application of Eq. (20) for a K profile355

representative of GLOBO (see below) and a CT =0.01. The

∆t decreases in the presence of K gradients thanks to con-

dition (18), and is limited around the K maximum (where

∂K/∂σ=0) by condition (19). The maximum of ∆t=∆T
is attained at higher levels.360

3.4 Boundary conditions

The necessary boundary condition for the conservation of

the probability (and therefore of the mass) is the reflective

boundary (Gardiner, 1990, p. 121). Wilson and Flesch

(1993) show that the elastic reflection ensures the WMC if365

the integration time-step is small enough. However, in cases

of non-homogeneous K, numerical implementation requires

that ∆t vanishes as the particle approaches the boundary. For

models that focus on near surface dispersion, the time-step

needed to achieve the required accuracy can become very370

small. Ermak and Nasstrom (2000) describe a theoretically

well founded method to speed-up (roughly by a factor of 10)

simulations of this kind.

In the case of IL-GLOBO, it will be shown that the elastic

reflection condition at σ=1, coupled with the adaptive time375

step algorithm described in Section 3.3, can ensure a good

approximation of the solution while maintaining affordable

the computational cost.

4 Model verification: the well-mixed condition

In order to test the vertical diffusion module of IL-GLOBO,380

a series of experiments was performed with a 1-D version of

the code. Input profiles were obtained by running the low-

resolution version of GLOBO (horizontal grid of 362×242
cells and 50 vertical levels evenly spaced in σ) for the period

03/11/2011 - 03/18/2011. After 6 hours of simulation time,385

averages on σ= const were performed for K, ρ and z, ob-

taining vertical profiles as a function of σ. They do not show

substantial variation in time and are considered representa-

tive of the mean atmosphere. Profiles of ρ and z are rather

smooth and regular over space and time, while K displays390

a large variability. The profiles were fitted with analytical

functions for subsequent use. The following analytical ex-

pressions were used:

ρ(σ)= ρ0σ
(RdΓ/g+1) , (21)

and:395

z(σ)=
(σ−RdΓ/g−1)T0

Γ
, (22)

with T0 =288.0 K, ρ0 =1.2 kgm−3 and Γ=−0.007 K m−1.

As can be observed, expressing the density ρ in sigma verti-

cal units (ρσ = ρ
∣

∣

dz
dσ

∣

∣) and using Equations (22) and (21), the

following constant value is obtained:400

ρσ =
ρ0RdT0

g
. (23)

Figure 3 shows the GLOBO averaged profiles and their fit-

ting functions for the density ρ and the Cartesian coordinate

z as function of σ.

As far as the K profile is concerned, the function405

K(z)=Azexp
[

−(Bz)C
]

, (24)

Fig. 2. Values of integration time-step ∆t for the diffusivity profile shown by the red curve. The
green line shows the contribution of Eq. (18), the blue line the contribution of Eq. (19), and the
black line the combined condition (Eq. 20, with ∆T = 432s and CT = 0.01).
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Fig. 3. Average GLOBO profiles of ρ (green symbols) and φ/g
(blue symbols) as a function of vertical coordinate σ, and their ana-

lytical fits (Eq. 21 and Eq. 22, lines of the same colors).

is used to account for the specific K features: it should dis-

play a linear behavior near the surface, must vanish near the

boundary layer top1 and, therefore, must display a maximum

at some height. In Equation (24), A= 0.23 was first deter-410

mined according to average surface-layer properties (the first

GLOBO vertical level), and corresponds to a friction veloc-

ity u∗ ≃ 0.5. Then, the other two parameters were let to vary

to best fit the average profile giving B = 3.8× 10−3 and

C =1.3.415

In the following sections, an alternative K profile is used

to test the model in a more critical situation. In fact, the local

K profiles resulting from a GLOBO simulation sometimes

display isolated strong maxima at the second level above the

model surface. This second profile was obtained from Equa-420

tion (24) by arbitrarily selecting B=2.0×10−3 and C =5.0.

Figure 4 reports the GLOBO averaged, ‘fitted’ and ‘peaked’

K profiles as function of σ.

4.1 Determination of the optimal setting for the adap-

tive time-step selection algorithm425

The first series of experiments concerns the optimization of

the adaptive scheme for ∆t, i.e., the selection of the best

suited value for the coefficient CT .

Simulations were performed in flow conditions described

by Equations (22), (21) and (24), distributing particles with430

number concentration proportional to ρ. For the WMC to be

satisfied, this distribution must remain constant as the time

evolves. A number of about 4×105 particles were used for

all the tests described in this section. Equation (11) was inte-

grated for each particle for 200 macro time-steps, each 432 s435

long, for a total of T =86400 s=24 h. Since the initial con-

dition was already well-mixed (C ∝ ρ), the simulation time

1In GLOBO, K also accounts for a part of the instability gen-

erated by moist convection and therefore it may not vanish at the

boundary layer top.
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Fig. 4. Diffusivity profiles used in the experiments. The blue sym-

bols show the average K profile from GLOBO. The green curve

represents the ‘fitted’ profile, while the red curve represents the

‘peaked’ profile. The functional form of both profiles is described

by Eq. (24).

CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 1. RMSE and execution time for different CT .

was considered sufficient to assess the skill of the model in

satisfying the WMC. At the end of the simulation, final pro-

files were computed of concentration in “σ volume”, i.e.,440

c(σ) =N(σ)(∆σ)−1, where N(σ) is the number of parti-

cles between σ and σ+∆σ. The skill of the model in repro-

ducing the WMC was evaluated using the root mean square

error (RMSE) of the final normalized concentration profile

with respect to the normalized density profile (derived using445

Equation 23).

Simulations were performed using 4 cores of an Intel Xeon

machine.

Figure 5 reports the different profiles of concentration af-

ter 24 hours of simulation computed using different values450

of CT . The shaded region represents the interval between 3

standard deviations from the expected value. RMSE values

for each simulation are reported in Table 1 along with the

computation time. The RMSE error becomes comparable to

the statistical error for CT = 0.01, which is selected as the455

optimal value.

It is also worth noting that the time-step selection algo-

rithm with the proper choice of CT ensures that the WMC

is satisfied at the reflective boundary too, as mentioned in

Section 3.4.460

Fig. 3. Average GLOBO profiles of ρ (green symbols) and φ/g (blue symbols) as a function of
vertical coordinate σ, and their analytical fits (Eqs. 21 and 22, lines of the same colors).
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Fig. 3. Average GLOBO profiles of ρ (green symbols) and φ/g
(blue symbols) as a function of vertical coordinate σ, and their ana-

lytical fits (Eq. 21 and Eq. 22, lines of the same colors).

is used to account for the specific K features: it should dis-

play a linear behavior near the surface, must vanish near the

boundary layer top1 and, therefore, must display a maximum

at some height. In Equation (24), A= 0.23 was first deter-410

mined according to average surface-layer properties (the first

GLOBO vertical level), and corresponds to a friction veloc-

ity u∗ ≃ 0.5. Then, the other two parameters were let to vary

to best fit the average profile giving B = 3.8× 10−3 and

C =1.3.415

In the following sections, an alternative K profile is used

to test the model in a more critical situation. In fact, the local

K profiles resulting from a GLOBO simulation sometimes

display isolated strong maxima at the second level above the

model surface. This second profile was obtained from Equa-420

tion (24) by arbitrarily selecting B=2.0×10−3 and C =5.0.

Figure 4 reports the GLOBO averaged, ‘fitted’ and ‘peaked’

K profiles as function of σ.

4.1 Determination of the optimal setting for the adap-

tive time-step selection algorithm425

The first series of experiments concerns the optimization of

the adaptive scheme for ∆t, i.e., the selection of the best

suited value for the coefficient CT .

Simulations were performed in flow conditions described

by Equations (22), (21) and (24), distributing particles with430

number concentration proportional to ρ. For the WMC to be

satisfied, this distribution must remain constant as the time

evolves. A number of about 4×105 particles were used for

all the tests described in this section. Equation (11) was inte-

grated for each particle for 200 macro time-steps, each 432 s435

long, for a total of T =86400 s=24 h. Since the initial con-

dition was already well-mixed (C ∝ ρ), the simulation time

1In GLOBO, K also accounts for a part of the instability gen-

erated by moist convection and therefore it may not vanish at the

boundary layer top.
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Fig. 4. Diffusivity profiles used in the experiments. The blue sym-

bols show the average K profile from GLOBO. The green curve

represents the ‘fitted’ profile, while the red curve represents the

‘peaked’ profile. The functional form of both profiles is described

by Eq. (24).

CT RMSE Time [s]

0.5 0.044 76

0.1 0.037 238

0.01 0.021 1172

0.001 0.021 7317

Table 1. RMSE and execution time for different CT .

was considered sufficient to assess the skill of the model in

satisfying the WMC. At the end of the simulation, final pro-

files were computed of concentration in “σ volume”, i.e.,440

c(σ) =N(σ)(∆σ)−1, where N(σ) is the number of parti-

cles between σ and σ+∆σ. The skill of the model in repro-

ducing the WMC was evaluated using the root mean square

error (RMSE) of the final normalized concentration profile

with respect to the normalized density profile (derived using445

Equation 23).

Simulations were performed using 4 cores of an Intel Xeon

machine.

Figure 5 reports the different profiles of concentration af-

ter 24 hours of simulation computed using different values450

of CT . The shaded region represents the interval between 3

standard deviations from the expected value. RMSE values

for each simulation are reported in Table 1 along with the

computation time. The RMSE error becomes comparable to

the statistical error for CT = 0.01, which is selected as the455

optimal value.

It is also worth noting that the time-step selection algo-

rithm with the proper choice of CT ensures that the WMC

is satisfied at the reflective boundary too, as mentioned in

Section 3.4.460

Fig. 4. Diffusivity profiles used in the experiments. The blue symbols show the average K profile
from GLOBO. The green curve represents the “fitted” profile, while the red curve represents the
“peaked” profile. The functional form of both profiles is described by Eq. (24).
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Fig. 5. Dispersion experiment with different choices of parame-

ter CT . Top panel: diffusivity profile (purple line) and ∆t profiles

for CT =0.5 (light blue), CT =0.1 (green), CT =0.01 (red) and

CT = 0.001 (blue). Bottom panel: normalized concentration pro-

files for different CT (Line colors as in the top panel).

Grid label Resolution (# points) Grid spacing

A 50 regular

B 50 non-regular

C 100 regular

D 100 non-regular

E 200 regular

F 500 regular

Table 2. Resolution and grid spacing type for experiments per-

formed in this work.

4.2 Evaluation of the interpolation algorithms

In the subsequent set of experiments, the model skill in re-

producing the WMC was evaluated for various resolutions

and different interpolation algorithms.

The analytical fields described by Equa-465

tions (21), (22) and (24) were sampled on the grids

defined in Table 2. The σ values for grid points in the case

of non-regular grid are defined by:

σ
(1/2)
i =βζi+γζ3i +δζ4i , (25)

where σ
(1/2)
i is the i-th semi-integer level, ζi = i/(NLEV+470

1), β =0.78, γ =1.44 and δ=1.22. The resulting grid has

higher resolution near σ = 1 and a lower resolution for the

levels in the center of the domain, where an accurate descrip-

tion of the fields is expected to be less necessary. Grids with

50 points (A, B) are representative of the actual GLOBO res-475

olution, while grids with 100 points are considered as a res-

olution attainable for specific experiments. Finer grids are

included only for testing purposes.

The two interpolation algorithms were tested for different

diffusivity profiles and resolutions. The particle number, ini-480

tial distribution and simulation time were the same as in the

experiment described in section 4.1.
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Fig. 6. Test for the linear interpolation algorithm using the ‘fitted’

diffusivity distribution sampled on grids defined in Table 2. Dif-

ferent colors correspond to different grid types: A (light blue), B

(black), C (green), D (blue), E (red). Top panel: Original (purple

continuous line) and sampled diffusivity profile and reference ∆t
profile (black line). Bottom panel: Normalized final concentration

(same colors as in the top panel).

The first experiment concerned the linear interpolation al-

gorithm. Figure 6 shows the results for numerical simula-

tions performed with the ‘fitted’ distribution at the various485

resolutions. The integration time-step and the diffusion co-

efficient profiles are shown in the upper panel. The lower

panel displays the normalized distribution of the particle af-

ter 24 hours of simulation along with the expected value.

The experiment with grid A deviates from the WMC both490

near the ground and in the region above the maximum of

diffusivity. The experiment with grid B performs noticeably

better at the ground, where the resolution is finer than in grid

A. All the other experiments give acceptable results, with the

only exception of the grid C experiment, which still displays495

an accumulation of particles near the ground. It can be ob-

served that the resolution of grid C is coarser than that of grid

B near the surface.

Figure 7 shows the same quantities as Figure 6 for the case

of the ‘peaked’ K profile. None of the resolutions produced500

results that fulfill the WMC. The same also true for the high-

est resolution (grid F), with a clearly visible depletion of par-

ticles in the area of strong gradient above the K maximum.

An additional reduction of the integration time-step by a fac-

tor of 102 did not improve the result (not shown).505

The problem could be related to the inconsistency between

interpolated functions and their derivatives (first- and second-

order) as a result of the linear interpolation between the grid

points. The numerical algorithm computes derivatives at

the grid points and then linearly interpolates functions and510

derivatives. With this choice, first- and second-order deriva-

tives are computed at the same order of approximation at the

grid points. However, between grid points the consistency of

the different components of the stochastic model is not guar-

Fig. 5. Dispersion experiment with different choices of parameter CT . Top panel: diffusivity
profile (purple line) and ∆t profiles for CT = 0.5 (light blue), CT = 0.1 (green), CT = 0.01 (red)
and CT = 0.001 (blue). Bottom panel: normalized concentration profiles for different CT (line
colors as in the top panel).
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Fig. 5. Dispersion experiment with different choices of parame-

ter CT . Top panel: diffusivity profile (purple line) and ∆t profiles

for CT =0.5 (light blue), CT =0.1 (green), CT =0.01 (red) and

CT = 0.001 (blue). Bottom panel: normalized concentration pro-

files for different CT (Line colors as in the top panel).

Grid label Resolution (# points) Grid spacing

A 50 regular

B 50 non-regular

C 100 regular

D 100 non-regular

E 200 regular

F 500 regular

Table 2. Resolution and grid spacing type for experiments per-

formed in this work.

4.2 Evaluation of the interpolation algorithms

In the subsequent set of experiments, the model skill in re-

producing the WMC was evaluated for various resolutions

and different interpolation algorithms.

The analytical fields described by Equa-465

tions (21), (22) and (24) were sampled on the grids

defined in Table 2. The σ values for grid points in the case

of non-regular grid are defined by:

σ
(1/2)
i =βζi+γζ3i +δζ4i , (25)

where σ
(1/2)
i is the i-th semi-integer level, ζi = i/(NLEV+470

1), β =0.78, γ =1.44 and δ=1.22. The resulting grid has

higher resolution near σ = 1 and a lower resolution for the

levels in the center of the domain, where an accurate descrip-

tion of the fields is expected to be less necessary. Grids with

50 points (A, B) are representative of the actual GLOBO res-475

olution, while grids with 100 points are considered as a res-

olution attainable for specific experiments. Finer grids are

included only for testing purposes.

The two interpolation algorithms were tested for different

diffusivity profiles and resolutions. The particle number, ini-480

tial distribution and simulation time were the same as in the

experiment described in section 4.1.
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Fig. 6. Test for the linear interpolation algorithm using the ‘fitted’

diffusivity distribution sampled on grids defined in Table 2. Dif-

ferent colors correspond to different grid types: A (light blue), B

(black), C (green), D (blue), E (red). Top panel: Original (purple

continuous line) and sampled diffusivity profile and reference ∆t
profile (black line). Bottom panel: Normalized final concentration

(same colors as in the top panel).

The first experiment concerned the linear interpolation al-

gorithm. Figure 6 shows the results for numerical simula-

tions performed with the ‘fitted’ distribution at the various485

resolutions. The integration time-step and the diffusion co-

efficient profiles are shown in the upper panel. The lower

panel displays the normalized distribution of the particle af-

ter 24 hours of simulation along with the expected value.

The experiment with grid A deviates from the WMC both490

near the ground and in the region above the maximum of

diffusivity. The experiment with grid B performs noticeably

better at the ground, where the resolution is finer than in grid

A. All the other experiments give acceptable results, with the

only exception of the grid C experiment, which still displays495

an accumulation of particles near the ground. It can be ob-

served that the resolution of grid C is coarser than that of grid

B near the surface.

Figure 7 shows the same quantities as Figure 6 for the case

of the ‘peaked’ K profile. None of the resolutions produced500

results that fulfill the WMC. The same also true for the high-

est resolution (grid F), with a clearly visible depletion of par-

ticles in the area of strong gradient above the K maximum.

An additional reduction of the integration time-step by a fac-

tor of 102 did not improve the result (not shown).505

The problem could be related to the inconsistency between

interpolated functions and their derivatives (first- and second-

order) as a result of the linear interpolation between the grid

points. The numerical algorithm computes derivatives at

the grid points and then linearly interpolates functions and510

derivatives. With this choice, first- and second-order deriva-

tives are computed at the same order of approximation at the

grid points. However, between grid points the consistency of

the different components of the stochastic model is not guar-

Fig. 6. Test for the linear interpolation algorithm using the “fitted” diffusivity distribution sam-
pled on grids defined in Table 2. Different colors correspond to different grid types: A (light
blue), B (black), C (green), D (blue), E (red). Top panel: original (purple continuous line) and
sampled diffusivity profile and reference ∆t profile (black line). Bottom panel: normalized final
concentration (same colors as in the top panel).
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Fig. 7. Same as in Fig. 6 for experiments with the ‘peaked’ diffu-

sivity distribution. Results using grid type F are shown in yellow.

Interpolation algorithm n. points exec. time RMSE

Akima-70 50 332 s 0.024

Akima-91 50 327 s 0.023

Linear 50 293 s 0.097

Akima-70 100 582 s 0.022

Akima-91 100 578 s 0.022

Linear 100 497 s 0.059

Table 3. Execution time and RMSE for experiments made with

the flat diffusivity distribution, varying resolution and interpolation

method.

anteed. Although it is appropriate for slowly varying and515

monotone functions like ρ and z, it is unsuitable for K, be-

cause it usually displays a more complex profile and affects

both the Wiener stochastic term and the drift term.

The use of an interpolation algorithm of higher order is

appropriate in this case. The choice of the Akima cubic520

spline automatically ensures consistency between values and

derivatives and the continuity of the first order derivative.

With the additional constraint for non-negative values (see

Section 3.2), the WMC is formally and numerically ensured,

along with the physical consistency of the solution.525

One drawback of higher-order polynomial interpolation

algorithms is the computational cost. To this end, the com-

putational cost of the Akima algorithms was evaluated, com-

paring its execution time to that of the linear interpolation

algorithm.530

Table 3 shows the results of this comparison expressed

in terms of execution time (in s) and accuracy (RMSE) for

resolutions of 50 and 100 grid points, in experiments with

the ‘fitted’ diffusivity distribution. The accuracy of experi-

ments with Akima interpolation is comparable with the re-535

sults obtained using analytical functions (as expected), and

their computational cost is only within a factor of 1.2 com-

pared to that of the linear algorithm.

5 Conclusions

The development of a vertical Lagrangian diffusion model540

is presented. This constitutes the first step in building IL-

GLOBO, a Lagrangian particle model integrated in the Eule-

rian global circulation model GLOBO. Critical details of the

implementation have been analyzed and discussed.

The model is developed including the variable density545

term and the proper coordinate transformation term. The

numerical scheme selected to integrate the SDE is the Mil-

stein scheme, which is of order of strong convergence γ=1.

Therefore, it should be regarded as the natural extension of

the deterministic Euler scheme, in contrast to the so-called550

Euler-Maruyama scheme, which is merely the “transcrip-

tion” of the deterministic Euler scheme, but not its equiva-

lent.

An adaptive time-step scheme is proposed to ensure the

consistency of the model implementation with the WMC re-555

quirements. The time-step selection algorithm is limited not

only by the condition imposed by the spatial scale of gra-

dients, but also takes into account the scale of the width of

maxima and minima of the diffusion coefficient, where the

former criterium fails. It is shown that this algorithm ensures560

that the error is within an acceptable range also at the reflect-

ing boundaries.

Numerical implementations have to deal with the intrinsic

discretization imposed by the grid of the Eulerian meteoro-

logical model. Two numerical interpolation and derivation565

schemes are implemented and tested. One is based on linear

interpolation and computation of discrete derivatives of or-

der two. The second is based on a modified Akima (1991)

interpolation algorithm.

It is found that in the case of the linear scheme strong570

gradients and isolated maxima in the diffusivity distribu-

tion make the results very sensitive to the spatial resolution

and the grid distribution. The model error in representing

the WM state is also more sensitive to the interpolation and

derivation error than to the time discretization error, as long575

as we consider a number of grid cells typical of a GLOBO

simulation and a reasonable setting for the adaptive time-step

scheme.

A vertical stretched grid should be used to solve the Eule-

rian fields in order to reduce the discretization problem near580

the ground, but the consequent increase in resolution will

not ensure the WMC compliance when strong gradients are

present.

The second interpolation method (Akima, 1970, 1991; Fis-

cher et al., 1991), while not guaranteeing the continuity of the585

second order derivative, gives good results at an acceptable

computational cost for 1D applications of the model, sug-

gesting that the consistency between the value of diffusivity

and its derivative is one of the determining factors for attain-

ing the WMC. The applicability of this scheme in the full 3D590

model still needs to be tested.

Fig. 7. Same as in Fig. 6 for experiments with the “peaked” diffusivity distribution. Results using
grid type F are shown in yellow.
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